Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2430
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDragomir, S. S.-
dc.contributor.authorGozpinar, A.-
dc.contributor.authorSet, E.-
dc.date.accessioned2022-08-17T05:52:57Z-
dc.date.available2022-08-17T05:52:57Z-
dc.date.issued2019-
dc.identifier.urihttp://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/853-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2430-
dc.description.abstractIn this article, a general integral identity for twice differentiable mapping involving fractional integral operators is derived. Secondly by using this identity we obtain some new generalized Hermite-Hadamards type inequalities for functions whose absolute values of second derivatives are s-convex and concave. The main results generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liouville fractional integral. Also we point out, some results in this study in some special cases such as setting s = 1, lambda = alpha, sigma (0) = 1 and w = 0, more reasonable than those obtained in [8].en_US
dc.language.isoengen_US
dc.publisherCOMENIUS UNIV, SCH MEDICINE, SPITALSKA 24, BRATISLAVA I, SK-813 72, SLOVAKIAen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHermite-Hadamard inequality; convex function; Holder inequality; Riemann-Liouville fractional integral; fractional integral operatoren_US
dc.titleSOME GENERALIZED HERMITE-HADAMARD TYPE INEQUALITIES INVOLVING FRACTIONAL INTEGRAL OPERATOR FOR FUNCTIONS WHOSE SECOND DERIVATIVES IN ABSOLUTE VALUE ARE S-CONVEXen_US
dc.typearticleen_US
dc.relation.journalACTA MATHEMATICA UNIVERSITATIS COMENIANAEen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0003-1364-5396en_US
dc.identifier.volume88en_US
dc.identifier.issue1en_US
dc.identifier.startpage87en_US
dc.identifier.endpage100en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.