Please use this identifier to cite or link to this item:
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2378
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Erdas, Yeter | - |
dc.contributor.author | Salas, Seren | - |
dc.contributor.author | Set, Erhan | - |
dc.contributor.author | Toplu, Tekin | - |
dc.date.accessioned | 2022-08-17T05:44:04Z | - |
dc.date.available | 2022-08-17T05:44:04Z | - |
dc.date.issued | 2019 | - |
dc.identifier.uri | http://doi.org/10.3390/fractalfract3020029 | - |
dc.identifier.uri | http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2378 | - |
dc.description.abstract | In this paper, firstly we have established a new generalization of Hermite-Hadamard inequality via p-convex function and fractional integral operators which generalize the Riemann-Liouville fractional integral operators introduced by Raina, Lun and Agarwal. Secondly, we proved a new identity involving this generalized fractional integral operators. Then, by using this identity, a new generalization of Hermite-Hadamard type inequalities for fractional integral are obtained. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND | en_US |
dc.relation.isversionof | 10.3390/fractalfract3020029 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | p-convex function; Hermite-Hadamard inequality; fractional integral operator | en_US |
dc.title | On Some Generalized Fractional Integral Inequalities for p-Convex Functions | en_US |
dc.type | article | en_US |
dc.relation.journal | FRACTAL AND FRACTIONAL | en_US |
dc.contributor.department | Ordu Üniversitesi | en_US |
dc.contributor.authorID | 0000-0003-1364-5396 | en_US |
dc.identifier.volume | 3 | en_US |
dc.identifier.issue | 2 | en_US |
Appears in Collections: | Matematik |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.