Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2378
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErdas, Yeter-
dc.contributor.authorSalas, Seren-
dc.contributor.authorSet, Erhan-
dc.contributor.authorToplu, Tekin-
dc.date.accessioned2022-08-17T05:44:04Z-
dc.date.available2022-08-17T05:44:04Z-
dc.date.issued2019-
dc.identifier.urihttp://doi.org/10.3390/fractalfract3020029-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2378-
dc.description.abstractIn this paper, firstly we have established a new generalization of Hermite-Hadamard inequality via p-convex function and fractional integral operators which generalize the Riemann-Liouville fractional integral operators introduced by Raina, Lun and Agarwal. Secondly, we proved a new identity involving this generalized fractional integral operators. Then, by using this identity, a new generalization of Hermite-Hadamard type inequalities for fractional integral are obtained.en_US
dc.language.isoengen_US
dc.publisherMDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLANDen_US
dc.relation.isversionof10.3390/fractalfract3020029en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectp-convex function; Hermite-Hadamard inequality; fractional integral operatoren_US
dc.titleOn Some Generalized Fractional Integral Inequalities for p-Convex Functionsen_US
dc.typearticleen_US
dc.relation.journalFRACTAL AND FRACTIONALen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0003-1364-5396en_US
dc.identifier.volume3en_US
dc.identifier.issue2en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.