Please use this identifier to cite or link to this item:
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2372
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gozpinar, Abdurrahman | - |
dc.contributor.author | Kavurmac-Onalan, Havva | - |
dc.contributor.author | Set, Erhan | - |
dc.date.accessioned | 2022-08-17T05:43:05Z | - |
dc.date.available | 2022-08-17T05:43:05Z | - |
dc.date.issued | 2019 | - |
dc.identifier.uri | http://doi.org/10.24193/subbmath.2019.4.01 | - |
dc.identifier.uri | http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2372 | - |
dc.description.abstract | In this article, we first establish a new general integral identity for differentiable functions with the help of generalized fractional integral operators introduced by Raina [8] and Agarwal et al. [1]. As a second, by using this identity we obtain some new fractional Hermite-Hadamard type inequalities for functions whose absolute values of first derivatives are convex. Relevant connections of the results presented here with those involving Riemann-Liouville fractional integrals are also pointed out. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | UNIV BABES-BOLYAI, MIHAIL KOGALNICEANU NR. 1, CLUJ-NAPOCA RO-3400, ROMANIA | en_US |
dc.relation.isversionof | 10.24193/subbmath.2019.4.01 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Hermite-Hadamard inequality; Riemann-Liouville fractional integral; fractional integral operator | en_US |
dc.title | General inequalities related Hermite-Hadamard inequality for generalized fractional integrals | en_US |
dc.type | article | en_US |
dc.relation.journal | STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | en_US |
dc.contributor.department | Ordu Üniversitesi | en_US |
dc.identifier.volume | 64 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 453 | en_US |
dc.identifier.endpage | 465 | en_US |
Appears in Collections: | Matematik |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.