Please use this identifier to cite or link to this item:
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2311
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Set, Erhan | - |
dc.date.accessioned | 2022-08-17T05:31:23Z | - |
dc.date.available | 2022-08-17T05:31:23Z | - |
dc.date.issued | 2018 | - |
dc.identifier.uri | http://doi.org/10.2298/FIL1816595S | - |
dc.identifier.uri | http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2311 | - |
dc.description.abstract | Remarkably a lot of Ostrowski type inequalities involving various fractional integral operators have been investigated by many authors. Recently, Raina [34] introduced a new generalization of the Riemann- Liouville fractional integral operator involving a class of functions defined formally by F-rho,lambda(sigma)(x) = Sigma(infinity)(k-0) sigma(k)/Gamma(rho k + lambda)x(k). Using this fractional integral operator, in the present note, we establish some new fractional integral inequalities of Ostrowski type whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville fractional integral operators. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | UNIV NIS, FAC SCI MATH, PO BOX 224, VISEGRADSKA 33, NIS, 18000, SERBIA MONTENEG | en_US |
dc.relation.isversionof | 10.2298/FIL1816595S | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | s-convex function; Ostrowski inequality; fractional integral operator | en_US |
dc.title | Some New Generalizations of Ostrowski Type Inequalities for s-Convex Functions via Fractional Integral Operators | en_US |
dc.type | article | en_US |
dc.relation.journal | FILOMAT | en_US |
dc.contributor.department | Ordu Üniversitesi | en_US |
dc.contributor.authorID | 0000-0003-1364-5396 | en_US |
dc.identifier.volume | 32 | en_US |
dc.identifier.issue | 16 | en_US |
dc.identifier.startpage | 5595 | en_US |
dc.identifier.endpage | 5609 | en_US |
Appears in Collections: | Matematik |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.