Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2311
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSet, Erhan-
dc.date.accessioned2022-08-17T05:31:23Z-
dc.date.available2022-08-17T05:31:23Z-
dc.date.issued2018-
dc.identifier.urihttp://doi.org/10.2298/FIL1816595S-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2311-
dc.description.abstractRemarkably a lot of Ostrowski type inequalities involving various fractional integral operators have been investigated by many authors. Recently, Raina [34] introduced a new generalization of the Riemann- Liouville fractional integral operator involving a class of functions defined formally by F-rho,lambda(sigma)(x) = Sigma(infinity)(k-0) sigma(k)/Gamma(rho k + lambda)x(k). Using this fractional integral operator, in the present note, we establish some new fractional integral inequalities of Ostrowski type whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville fractional integral operators.en_US
dc.language.isoengen_US
dc.publisherUNIV NIS, FAC SCI MATH, PO BOX 224, VISEGRADSKA 33, NIS, 18000, SERBIA MONTENEGen_US
dc.relation.isversionof10.2298/FIL1816595Sen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjects-convex function; Ostrowski inequality; fractional integral operatoren_US
dc.titleSome New Generalizations of Ostrowski Type Inequalities for s-Convex Functions via Fractional Integral Operatorsen_US
dc.typearticleen_US
dc.relation.journalFILOMATen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0003-1364-5396en_US
dc.identifier.volume32en_US
dc.identifier.issue16en_US
dc.identifier.startpage5595en_US
dc.identifier.endpage5609en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.