Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2207
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAytac, A.-
dc.contributor.authorCiftci, C.-
dc.date.accessioned2022-08-17T05:13:10Z-
dc.date.available2022-08-17T05:13:10Z-
dc.date.issued2020-
dc.identifier.urihttp://doi.org/10.1134/S0001434620010228-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2207-
dc.description.abstractA porous exponential dominating set of a graph G is a subset S such that, for every vertex v of G, n-ary sumation (u is an element of S)(1/2)(d(u, v)-1) >= l, where d(u, v) is the distance between vertices u and v. The porous exponential domination number, gamma e*(G), is the minimum cardinality of a porous exponential dominating set. In this paper, we determine porous exponential domination number of the Harary graph H-k,H-n for all k and n.en_US
dc.language.isoengen_US
dc.publisherMAIK NAUKA/INTERPERIODICA/SPRINGER, 233 SPRING ST, NEW YORK, NY 10013-1578 USAen_US
dc.relation.isversionof10.1134/S0001434620010228en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectgraph theory; porous exponential domination; Harary graphen_US
dc.titlePorous Exponential Domination in Harary Graphsen_US
dc.typearticleen_US
dc.relation.journalMATHEMATICAL NOTESen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0001-5397-0367en_US
dc.identifier.volume107en_US
dc.identifier.issue1-2en_US
dc.identifier.startpage231en_US
dc.identifier.endpage237en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.