Please use this identifier to cite or link to this item:
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2207
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aytac, A. | - |
dc.contributor.author | Ciftci, C. | - |
dc.date.accessioned | 2022-08-17T05:13:10Z | - |
dc.date.available | 2022-08-17T05:13:10Z | - |
dc.date.issued | 2020 | - |
dc.identifier.uri | http://doi.org/10.1134/S0001434620010228 | - |
dc.identifier.uri | http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2207 | - |
dc.description.abstract | A porous exponential dominating set of a graph G is a subset S such that, for every vertex v of G, n-ary sumation (u is an element of S)(1/2)(d(u, v)-1) >= l, where d(u, v) is the distance between vertices u and v. The porous exponential domination number, gamma e*(G), is the minimum cardinality of a porous exponential dominating set. In this paper, we determine porous exponential domination number of the Harary graph H-k,H-n for all k and n. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | MAIK NAUKA/INTERPERIODICA/SPRINGER, 233 SPRING ST, NEW YORK, NY 10013-1578 USA | en_US |
dc.relation.isversionof | 10.1134/S0001434620010228 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | graph theory; porous exponential domination; Harary graph | en_US |
dc.title | Porous Exponential Domination in Harary Graphs | en_US |
dc.type | article | en_US |
dc.relation.journal | MATHEMATICAL NOTES | en_US |
dc.contributor.department | Ordu Üniversitesi | en_US |
dc.contributor.authorID | 0000-0001-5397-0367 | en_US |
dc.identifier.volume | 107 | en_US |
dc.identifier.issue | 1-2 | en_US |
dc.identifier.startpage | 231 | en_US |
dc.identifier.endpage | 237 | en_US |
Appears in Collections: | Matematik |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.