Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2203
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChoi, Junesang-
dc.contributor.authorGozpinar, Abdurrahman-
dc.contributor.authorSet, Erhan-
dc.date.accessioned2022-08-16T13:25:28Z-
dc.date.available2022-08-16T13:25:28Z-
dc.date.issued2017-
dc.identifier.urihttp://doi.org/10.1186/s13660-017-1476-y-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2203-
dc.description.abstractWe firstly give a modification of the known Hermite-Hadamard type inequalities for the generalized k-fractional integral operators of a function with respect to another function. We secondly establish several Hermite-Hadamard type inequalities for the generalized k-fractional integral operators of a function with respect to another function. The results presented here, being very general, are pointed out to be specialized to yield some known results. Relevant connections of the various results presented here with those involving relatively simple fractional integral operators are also indicated.en_US
dc.language.isoengen_US
dc.publisherSPRINGEROPEN, CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLANDen_US
dc.relation.isversionof10.1186/s13660-017-1476-yen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCONVEX-FUNCTIONSen_US
dc.subjectGamma function; k-gamma function; convex function; Hermite-Hadamard type inequalities; Riemann-Liouville fractional integrals; generalized k-fractional integral operatorsen_US
dc.titleHermite-Hadamard type inequalities for the generalized k-fractional integral operatorsen_US
dc.typearticleen_US
dc.relation.journalJOURNAL OF INEQUALITIES AND APPLICATIONSen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0002-1470-2287en_US
dc.contributor.authorID0000-0002-7240-7737en_US
dc.contributor.authorID0000-0003-1364-5396en_US
dc.identifier.issue206en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.