Please use this identifier to cite or link to this item:
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2201
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Awan, Muhammed Uzair | - |
dc.contributor.author | Gozpinar, Abdurrahman | - |
dc.contributor.author | Noor, Muhammed Aslam | - |
dc.contributor.author | Set, Erhan | - |
dc.date.accessioned | 2022-08-16T13:24:42Z | - |
dc.date.available | 2022-08-16T13:24:42Z | - |
dc.date.issued | 2017 | - |
dc.identifier.uri | http://doi.org/10.1186/s13660-017-1444-6 | - |
dc.identifier.uri | http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2201 | - |
dc.description.abstract | In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liouville fractional integral. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | SPRINGER INTERNATIONAL PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND | en_US |
dc.relation.isversionof | 10.1186/s13660-017-1444-6 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | CONVEX-FUNCTIONS | en_US |
dc.subject | Hermite-Hadamard inequality; convex function; Holder inequality; fractional integral operator | en_US |
dc.title | Generalized Hermite-Hadamard type inequalities involving fractional integral operators | en_US |
dc.type | article | en_US |
dc.relation.journal | JOURNAL OF INEQUALITIES AND APPLICATIONS | en_US |
dc.contributor.department | Ordu Üniversitesi | en_US |
dc.contributor.authorID | 0000-0001-6105-2435 | en_US |
dc.contributor.authorID | 0000-0002-1019-9485 | en_US |
dc.contributor.authorID | 0000-0003-1364-5396 | en_US |
dc.identifier.volume | 169 | en_US |
Appears in Collections: | Matematik |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.